Learning Multi-Step Predictive State Representations

نویسندگان

  • Lucas Langer
  • Borja Balle
  • Doina Precup
چکیده

Recent years have seen the development of efficient and provably correct spectral algorithms for learning models of partially observable environments arising in many applications. But despite the high hopes raised by this new class of algorithms, their practical impact is still below expectations. One reason for this is the difficulty in adapting spectral methods to exploit structural constraints about different target environments which can be known beforehand. A natural structure intrinsic to many dynamical systems is a multi-resolution behaviour where interesting phenomena occur at different time scales during the evolution of the system. In this paper we introduce the multi-step predictive state representation (M-PSR) and an associated learning algorithm that finds and leverages frequent patterns of observations at multiple scales in dynamical systems with discrete observations. We perform experiments on robot exploration tasks in a wide variety of environments and conclude that the use of M-PSRs improves over the classical PSR for varying amounts of data, environment sizes, and number of observations symbols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TD(λ) Networks: Temporal-Difference Networks with Eligibility Traces

Temporal-difference (TD) networks have been introduced as a formalism for expressing and learning grounded world knowledge in a predictive form (Sutton & Tanner, 2005). Like conventional TD(0) methods, the learning algorithm for TD networks uses 1-step backups to train prediction units about future events. In conventional TD learning, the TD(λ) algorithm is often used to do more general multi-s...

متن کامل

Schema Learning: Experience-Based Construction of Predictive Action Models

Schema learning is a way to discover probabilistic, constructivist, predictive action models (schemas) from experience. It includes methods for finding and using hidden state to make predictions more accurate. We extend the original schema mechanism [1] to handle arbitrary discrete-valued sensors, improve the original learning criteria to handle POMDP domains, and better maintain hidden state b...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Predictive Representations of State

We show that states of a dynamical system can be usefully represented by multi-step, action-conditional predictions of future observations. State representations that are grounded in data in this way may be easier to learn, generalize better, and be less dependent on accurate prior models than, for example, POMDP state representations. Building on prior work by Jaeger and by Rivest and Schapire...

متن کامل

MULTI-MODAL UTILE DISTINCTIONS Multi-Modal Utile Distinctions

We introduce Multi-Modal Utility Trees (MMU), an algorithm for autonomously learning decision treebased state abstractions in Partially Observable Markov Decision Processes with multi-modal observations. MMU builds the trees using the Kolmogorov-Smirnov statistical test. Additionally, MMU incorporates the ability to perform online tree restructuring, enabling it to build and maintain a compact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016